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Abstract Recently, vision-based advanced driver-assistance
systems (ADAS) have received a new increased interest to
enhance driving safety. In particular, due to its high perfor-
mance–cost ratio, mono-camera systems are arising as the
main focus of this field of work. In this paper we present a
novel on-board road modeling and vehicle detection system,
which is a part of the result of the European I-WAY project.
The system relies on a robust estimation of the perspective
of the scene, which adapts to the dynamics of the vehicle
and generates a stabilized rectified image of the road plane.
This rectified plane is used by a recursive Bayesian classi-
fier, which classifies pixels as belonging to different classes
corresponding to the elements of interest of the scenario.
This stage works as an intermediate layer that isolates sub-
sequent modules since it absorbs the inherent variability of
the scene. The system has been tested on-road, in different
scenarios, including varied illumination and adverse weather
conditions, and the results have been proved to be remarkable
even for such complex scenarios.

Keywords ADAS · Real-time · Plane rectification ·
Bayesian segmentation · Kalman filtering · Multi-domain
vehicle tracking

1 Introduction

On-board advanced driver-assistance systems (ADAS) have
been receiving increasing attention from the intelligent trans-
portation system (ITS) community (car manufacturers,
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research centers and users) due to their ability to provide
useful information about the vehicle environment by func-
tioning as sensors for services such as lane departure warning,
collision avoidance, stop-and-go, etc. In particular, the solu-
tions based on video processing have played an important
role in this field since the past decade, due to their low cost,
the increased performance of microprocessor systems, and
the research advances in the field of computer vision [1].

The on-board scenario poses a number of challenges for
vision systems, as it is an extremely varied environment [2].
For instance, it involves sudden and significant illumination
changes (as when entering into tunnels), different types of
road pavement, or the appearance of lane markings, which
may have contrasts that vary significantly from one road to
another. Moreover, weather conditions may also affect vision
systems. For example, the image could contain rain drops,
moving wipers, etc. Additionally, the motion of the scene
entails more complexity, as it is composed of the motion
induced by the vehicle itself with respect to static elements,
and of other vehicles, typically moving at different speeds.

The most recent trends in this field have focused on 3D
environment modeling using stereovision systems, due to
their ability to recover depth information from the analy-
sis of two synchronized video inputs. For instance, several
works address sub-pixel accuracy lane markings models
[3–5] using calibration information. Others use image align-
ment between the stereo pair to detect volumetric objects on
the road plane [6,7], or to enhance lane marking detection [8].

While showing promise in obtaining depth information,
stereoscopic vision has a number of drawbacks: multi-view
systems are typically not considered for real-time applica-
tions due to their built-in complexity, which is mainly related
to the calibration process, the necessity of a synchronized
acquisition system, and the difficulties encountered in finding
reliable correspondences between images [9]. Mono-camera

123



928 M. Nieto et al.

systems are more cost-effective and hence more widely used
in real applications [10]. Different mono-camera approaches
have been proposed in the literature to address the road mod-
eling [11], including accurate lane markings models [12,13],
and vehicle detection and tracking [14–17].

Some of these solutions provide coarse or incomplete
results due to the intrinsic limitations of the mono-camera
analysis: projective geometry is typically handled using
appearance-based methods that may be faster than stereo [18]
without evaluating the loss in robustness. However, some
researchers compensate for this limitation by making prior
assumptions about the environment, for example, by defin-
ing a constant relative pose of the camera with respect to the
road [11,19]. However, such approaches reduce the system’s
capability to adapt to more realistic situations.

In this paper we propose a new mono-camera system,
which is the result of the research work carried out during
the European I-WAY project. It provides an accurate and
very complete environment model that dynamically adapts
to changes in the scenario and that minimizes the use of prior
information. This approach comprises robust strategies that
ensure reliable real-time operation in real driving situations.

Our approach is fully adaptive to the unknown scenario
conditions, without using prior information about the pose
of the camera with respect to the road, which as opposed to
most approaches in the literature is automatically retrieved
through an adaptive computation of the image-plane to road-
plane homography [2,20]. This transform, which is stabilized
using a dynamic vanishing point estimation method, removes
the inherent perspective distortion from the images and thus
simplifies further analysis stages.

The adaptability to the extremely variable on-road envi-
ronment is given by a MAP probabilistic framework, which
is the major contribution of this paper, since it allows to inte-
grate models of different elements of the road altogether
in a simple way, allowing to overcome the need to handle
multiple detectors for each targeted element (vehicles, lane
markings, pavement, etc.). This framework operates on the
transformed domain and segments the elements of the road
according to a set of dynamic likelihood and prediction mod-
els that are updated through the observation of different fea-
tures extracted from the images. This stage can be seen as a
layer that absorbs the dynamism of the input images, includ-
ing illumination changes, rapid motion objects, or sudden
changes of the appearance of the road. The output are steady
segmented images that facilitate the subsequent modeling
tasks, which do not have to care about the complexity of the
observations.

The description of the road environment delivered by the
modeling stages takes into consideration a wide variety of
useful information for ADAS. This information is related to
both static and dynamic elements of the environment, e.g.,
the lanes and their geometry, and mainly, the vehicles on the
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Fig. 1 Block diagram of the proposed Road Modeling system

road. These elements are described using appearance-based
models that are dynamically updated through stochastic fil-
tering, which enhances the accuracy and completeness of
the results. Most remarkably, a cooperative analysis of the
original and transformed domain is exploited to overcome
the intrinsic limitations of each domain.

The system has been tested on-road, and has proved to
perform in real-time and to provide accurate and reliable
results for a set of different environments, including variable
illumination and adverse weather conditions, heavy traffic,
different types of roads, different pavement colors, etc.

2 System overview

The system aims to provide a full description of the scenario
ahead of the vehicle, i.e., a model of the road and the vehicles
in it, in real-time. The block diagram of the system is shown
in Fig. 1. The processing is divided into three core blocks:
perspective analysis, recursive Bayesian segmentation, and
scene modeling. For each incoming image, the geometry of
the scene is analyzed in order to derive a transformation that
removes perspective distortion from the image. As a result,
a fronto-parallel view of the road ahead is obtained in which
road elements (i.e., lane markings) and vehicle dynamics are
proportional to their real appearance and behavior, as shown
in Fig. 2. Then, the image in the transformed domain is seg-
mented through a Bayesian classifier that uses a parametric
multiple-class likelihood model of the road. The pixels in
the image are thus classified as belonging to pavement, lane
markings, dark objects or to unknown elements not classifi-
able as any of the previous (see Fig. 2c).

In the final stage, a full description of the scene elements is
provided, using the information obtained in the segmentation
image and the defined models. This stage consists of two par-
allel analysis modules: road modeling and vehicle detection
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Fig. 2 Segmentation process:
a original image; b road-plane;
and c four-level segmentation
(in black for unknown elements)

and tracking. In the former, novel lane tracking and model
fitting techniques allow to obtain precise information of the
own and adjacent lanes. In turn, vehicle detection and track-
ing strategy relies on a collaborative approach between the
original and the transformed domains. Additionally, a feed-
back loop allows to use vehicle detection results as an input
for segmentation of the following images, thus exploiting
their underlying temporal coherence. Eventually, the output
of both modules is combined to produce high level informa-
tion, such as detections of lane changes of the own or other
vehicles, vehicle trajectories, etc.

3 Perspective analysis

An important perspective distortion arises in images cap-
tured from cameras moving in the direction of the optical
axis, as shown in the example in Fig. 2a. There are a num-
ber of benefits derived from the removal of this effect in
road scenarios, available through the computation of a virtual
fronto-parallel view of the road ahead (typically denoted as
“bird’s-eye view” or “Inverse Perspective Mapping”) [2,21]:
lane markings are parallel in this domain, lanes are imaged
with their actual width (up to scale), the complexity of the
curve analysis is reduced and also the relative speed and
position of the vehicles are imaged without distortion, with
magnitudes proportional to the actual ones on the road.

Many works, especially the former on plane rectification
[2], assumed the prior knowledge of all the parameters of the
projective matrix: i.e., the camera calibration matrix as well
as the relative rotation and translation of the camera with
respect to the road plane.

These type of assumptions might be valid for surveillance
systems that do not model the dynamism of the road scenario,
but in on-board systems it can lead to large errors in the rec-
tification, due to the steering of the vehicle, its bumping, or
slope changes. Some authors have studied the dependence
of the obtained transform image according to the variability
of the environment. For instance, [31] analyzes the impact of
the pitch and yaw angles in the obtained rectified image in
terms of radial distortion and parallelism. In this line, differ-
ent authors have identified the pitch angle error (i.e. the error
between the instantaneous pitch angle and that used to per-

form rectification), as the main cause of the image distortion,
and have proposed methods to minimize this error. Jiang [18]
computes the rectification with fixed parameters and checks
the parallelism between the left and right lane markings, esti-
mated as straight lines, corrects the angles, and re-estimates
the rectification. Cerri [30] computes several rectifications
using a range of pitch values, and then also checks the par-
allelism between the detected lane markings to determine
which pitch angle was the correct one.

In this work, we propose to update the values of both
the pitch and yaw angles at each time instant by means
of the robust computation of the dominant vanishing point
of the scene, given by the intersection of the lane markings.
Hence, in contrast to most approaches our method represents
a flexible and robust alternative to perform plane rectification.

3.1 Pinhole camera projection

The projection process that generates the image shown in
Fig. 2b is described as a linear process using homogeneous
coordinates for both the points in the 3D space and the image
coordinates [22]. If we define a point in the 3D world as X in
homogeneous coordinates, its projection into the image plane
combines two transforms: the former converts the point into
the camera coordinate system, yielding Xc, and the second
projects it into the image plane, x. The combination of these
steps renders the following expression:

x = KXc = K(R| − Rc)X = PX (1)

where P is the so-called projection matrix, K is the cam-
era calibration matrix, and R and c are the aforementioned
relative rotation and translation, respectively, between the
world and camera coordinate systems. These concepts are
illustrated in Fig. 3.

If we now consider points in the 3D space that correspond
to the road plane (i.e., with spatial coordinate Y = 0), and
define pi as the i-th column of P we arrive at the following
expression:

x = P

⎛
⎜⎜⎝

X
0
Z
1

⎞
⎟⎟⎠ = ( p1 p3 p4 )

⎛
⎝

X
Z
1

⎞
⎠ = Hx′ (2)
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Fig. 3 Yaw (γ ), pitch (θ) and roll (β) angles, respectively in a, b, and c within the defined road scenario. The camera coordinate system is shown
as {Xc, Yc, Zc}

which yields the target plane to plane homography H between
the coordinates of the points of the road plane, x′, and the
points on the image plane, x.

Therefore, we can compute the homography that leads to
the rectified domain by computing the unknown parameters
of the projection matrix P, which are, in our case, the rota-
tion angles. The rest of parameters can be considered fixed
and known, like the camera calibration matrix K, which is
computed off-line, and the translation c, as the camera moves
rigidly with respect to the vehicle.

Since the camera is installed inside the vehicle with null
roll angle, the problem is significantly simplified. This
assumption holds if the camera is carefully installed without
rotation with respect the Z -axis, and implies that the horizon
line is actually horizontal. Hence, if we determine the posi-
tion of the horizon in the image (by estimating its coordinate
in the Y -axis), we have recovered the affine properties of the
plane, e.g., parallelism, area ratios, as well as the angular
information, provided that we know the camera calibration
matrix.

This way it is enough to compute the vanishing point asso-
ciated with the lane markings of the road, that we will call
vz = (vz,1, vz,2, 1)�, which belongs to the line at the infin-
ity and thus defines it completely. The computation of the
vanishing point is addressed in the following section.

The vanishing point is then projected into the camera coor-
dinate system as v′

z = K−1vz , so that the pitch and yaw angles
can be directly computed as

θ = arctan(v′
z,2); γ = arctan

(
− v′

z,1

cos θ

)
(3)

These expressions come from the following argument:
consider the point at the infinity corresponding to the van-
ishing point vz , and its projection into the image plane as

vz = K(R| − Rc)

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ = K

⎛
⎝

tan γ cos θ

tan θ

1

⎞
⎠ (4)

so that if we consider that we know the camera calibration
matrix and we left-multiply both sides of (4) by K−1 we

obtain v′
z = (tan γ cos θ, tan θ, 1)�, which are two equations

on the two unknowns θ and γ , solved using the Eq. (3).
Figures 4 and 5 show two example sequences represent-

ing two typical situations. The former depicts a lane change
manoeuver, where the vehicle is steering at the right and
makes two consecutive lane changes. As shown in Fig. 4,
the height of the vanishing point, vz,2 is almost constant,
apart from some detection noise, and so is the pitch angle.
The transversal position of the vanishing point, vz,1, changes,
indicating a significant change of the yaw angle. This is max-
imum when the vehicle is at maximum steer, and returns to
its initial values as the vehicle stabilizes its position within a
lane.

The second example, shown in Fig. 5 illustrates the behav-
ior of the vanishing point in a significant road slope. The pitch
angle is the one that varies more significantly, following the
movement of the vertical component of the vanishing point,
vz,2. The yaw angle is steady, since although it depends on the
variation of the pitch angle, its influence is highly attenuated
by the arctangent expression shown in Eq. (3).

As a result, we obtain rectified images of planes which
show parallel lane markings, with constant width, even in
difficult situations where the described extrinsic parameters
vary.

3.2 Vanishing point estimation

As stated in the previous section, the correct estimation of the
vanishing point along time is a key step towards the adapt-
ability and stability of the system. For this purpose, we have
designed a robust method for vanishing point estimation.
It is based on a specific lane marking detector that pro-
vides instantaneous measurements about the vanishing point,
and on a Kalman filter that provides temporal coherence to
the measurements, and also allows to control the putative
outliers.

Lane markings can be approximated as straight lines in the
lower part of the image, even in the presence of significant
curvature ahead. The detection is done using a specific lane
marking detector, which is applied to each row of the image,
assuming that the appearance of the lane markings in this
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Fig. 4 Example of variation of the pitch and yaw angle in a lane change manoeuver. The vanishing point is shown as the intersection of two colored
lines for a better visualization (color in online)
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Fig. 5 Example of variation of the pitch and yaw angle in a road slope change

one-dimensional domain is given by pulses of high intensity
values surrounded by darker regions. Therefore, the analysis
is done by independently filtering each image row of inten-
sity values, denoted as {xi }W

i=1, resulting in a new filtered data
array {yi }W

i=1, defined as

yi = 2xi − (xi−τ + xi+τ ) − |xi−τ − xi+τ | (5)

where τ is the width parameter that governs the filtering pro-
cess. This filter produces high responses for positions with
xi values that are higher than those of their neighbors on
the left and right at a distance τ . The last term in (5) penal-
izes cases in which the difference between the left and right
neighbors is high, so that a higher response is given to posi-
tions with similar left and right neighbors. This last term
makes this filter less prone to errors than other lane marking

detectors presented in the literature [2,20]. An example is
given in Fig. 6: the original and filtered images of a typical
road scene are shown, and two different rows are analyzed,
showing both the intensity of the original image and the result
of the filter in each row. Row 2 exemplifies the excellent per-
formance of the detector, even with obstructing elements,
such as the wiper of the vehicle. The scenario of Row 1 is
more challenging, as there are several abrupt changes in the
intensity profile, due to the presence of vehicles. Neverthe-
less, as shown in the response profile, our method accurately
detects the lane marking of interest and dismisses the super-
fluous information.

The well known Hough transform [23] is then used to
detect lines in the resulting image. This transform is robust
against outliers and provides multiple line fitting. Each line
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Fig. 6 Lane marking detector
example. For clarity, the
response to the filter has been
normalized between 0 and 1
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Fig. 7 Hough transform applied to the image result of the lane marking
detector: a least squares vanishing point depicted as the intersection of
the red lines; and b a zoom of a lane marking for which several lines
have been fitted (color in online)

is parameterized with an angle θ and a distance ρ as x sin θ +
y cos θ = ρ.

The Hough transform may give more than two lines for
each lane marking, which result in multiple intersection
points, as shown in Fig. 7. We apply here a robust scheme
that allows us to filter the lines delivered by the Hough trans-
form, in order to remove the putative outliers that would
significantly affect the least squares solution. The RANSAC
algorithm is used to classify lines into inliers and outliers.
This algorithm works iteratively, by selecting, at each iter-
ation, a pair of lines and computing its intersection point.
The lines whose distance to this point are less than a given
error threshold are computed as inliers, and denoted as the
consensus set of the hypothesis. RANSAC iterates until the
probability of finding a better consensus set is below some
convergence threshold (typically 5%).

This way, the outliers are removed from the set of lines,
and we can compute the vanishing point vz , without risks, as
the solution of the system of equations built with the equa-
tions of each detected line:

[
s | c

]
v = p (6)

where s=(sin θ0, . . . , sin θl−1)
�, c=(cos θ0, . . . , cos θl−1)

�,
p = (ρ0, . . . , ρl−1)

�, and l is the number of lines. The least
squares solution is obtained with SVD. Figure 7 shows an
example of the computation of the vanishing point for a typ-
ical road scene.

Each instantaneous estimate of the vanishing point
obtained, as described earlier, is treated as a noisy measure-
ment, which is then introduced into a Kalman filter to provide
a better estimation of the vanishing point.

Briefly, this approach stabilizes the coordinates of the
detected vanishing point by adding temporal coherence to the
estimation process. The dynamic model used is a constant-
velocity model, with the state vector sk = (vx , vy, v̇x , v̇y)

�.
This model is explained in more detail in Sect. 5.1.

4 Recursive Bayesian segmentation

The segmentation algorithm used in this work is based on the
Bayesian decision theory. The algorithm defines a paramet-
ric multiple-class likelihood model of the road, from which
pixels are classified into different classes, with an associated
probability of error.

Three types of elements of interest are considered within
any road-plane image:

– Pavement: light gray regions of the road.
– Lane markings: bright stripes painted on the road.
– Objects: dark elements, such as the lower parts of

vehicles, their wheels, shadows, etc.

The probabilistic framework handles all the available
information in a simple and robust way, by defining the prior
probabilities and the likelihood models, and by appropriately
choosing the features that best characterize the classes that
are to be identified. Therefore, it avoids defining and com-
puting a large amount of deterministic cases or situations
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Fig. 8 Example of the application of the Bayesian classifier to the
transformed domain: upper row contains images corresponding to very
different scenarios; and lower contains the segmented images. Note that
the result is very accurate for all of them, except for the tunnel sequence,

in which the sudden illumination changes makes the classifier to set to
unknown most of pavement pixels. Nevertheless, this does not affect
either the lane markings or the vehicle detection stages

regarding illumination conditions, presence of vehicles,
motion, etc.

Besides, classical approaches tend to classify pixels as
strictly belonging to one of the aforementioned elements.
In contrast, we make use of an additional “unknown” class,
which gathers the pixels which do not match the models
defined for the sought elements. This is quite frequent in out-
door uncontrolled environments, where additional elements
such as median stripes or guard rails can appear. The pro-
posed method considers these cases and hence avoids classi-
fication error.

4.1 Bayesian framework

Let S = {P, L , O, U } be the set of classes that represent,
respectively, the pavement, lane markings, objects, and the
unidentified elements. The target of the classifier is to assign
one of these classes to each pixel of the image.

Let Xi represent the event that a pixel, indexed with its
spatial coordinates inside the image (x, y), with an associated
observation vector denoted as zxy , is classified as belonging
to the class i ∈ S. Using the Bayesian decision theory, this
classification is carried out by selecting the class that max-
imizes the a posteriori conditional probability P(Xi |zxy),
which is decomposed by the Bayes’ rule as

P(Xi |zxy) = p(zxy |Xi )P(Xi )

P(zxy)
(7)

where p(zxy |Xi ) is the likelihood function, i.e., the proba-
bility that a pixel, according to its associated measurements,
belongs to class i; P(Xi ) is the prior probability of each
class and P(zxy) is the evidence, computed as P(zxy) =∑

i∈S p(zxy |Xi )P(Xi ), which is a scale factor that ensures
that the posteriors sum to unity.

The result, for each pixel, is a set of posterior probabili-
ties {P(Xi |zxy)}i∈S , which denote the probability that a pixel

belongs to each defined class. Accordingly, each pixel of the
image is classified as the class with the maximum poster-
ior probability. The likelihood and the prior probabilities are
computed as described in the following subsections.

Figure 8 shows the resulting four-level segmentation for
a number of example images. As shown, the segmentation is
applied to the road plane image after the perspective trans-
form is computed. In the segmented image, for clarity, the
pixels have been colored according to their classification: the
white pixels belong to the lane markings, the light gray pixels
are those that likely belong to the pavement of the road, and
the dark gray pixels are those that are assigned to the wheels
and shadows of the lower parts of the vehicles. The black
pixels are those that have not been classified as belonging
to any of the three previous classes, and therefore remain as
unknown pixels.

4.2 Likelihood models

In this section the likelihood models are described as para-
metric functions, according to the expected properties of the
considered image features with respect to the defined classes.
Additionally, the estimation of their parameters is obtained
through an optimization process using the Expectation-
Maximization (EM) algorithm.

The basic appearance of the defined classes may be
described as follows: the pavement is usually a homogeneous
area in the transformed image, sharing a common intensity
level with low variations among pixels; the lane markings
are represented as near-vertical bright stripes, usually sur-
rounded by pavement pixels; and objects typically can be
characterized by dark regions with intensity levels lower than
the pavement (note that even white vehicles contain dark
areas in their lower part due to shadows and wheels).
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Fig. 9 Initialization of the
parameters of the likelihood
function for the intensity feature

Edge mask Pavement pixels Object pixelsLane markings pixels

(a) (b) (c) (d) (e)

Rectified plane

With this information, it is possible to design pixel-level
features that help to differentiate between classes. Two fea-
tures have been used for this purpose: the intensity or
grayscale level, Ixy , and the response to the lane marking
detector, Lxy . The combination of these features ensures a
clear class differentiation, especially accurate for the lane
markings class, thus allowing to reduce misclassifications.
The likelihood function of class i is defined as the product
of the likelihood functions for each image feature assumed
to be conditionally independent: p(zxy |Xi ) = p(Ixy |Xi )

p(Lxy |Xi ).

4.2.1 Intensity feature

The likelihood functions for Ixy are all defined as normal
distributions. In particular, the likelihood of the pavement
class is

p(Ixy |X P ) ∝ exp

(
− 1

2σ 2
I,P

(Ixy − μI,P )2

)
(8)

where μI,P and σI,P are the mean and standard deviation of
the distribution. The likelihood distributions of the other clas-
ses are parameterized analogously as {μI,L , σI,L }, {μI,O ,

σI,O} and {μI,U , σI,U }. Note that there is an implicit neces-
sary condition that must be satisfied: μI,O < μI,P < μI,L ,
since the dark objects are always darker, as well as lane mark-
ings are always clearer than the pavement. The model for the
unknown class is defined as a normal distribution with large
fixed variance, so that it is similar to a uniform distribution.

4.2.2 Lane marking detector

Regarding the likelihood functions associated with the pro-
posed detector, lane markings are expected to provide high
response values to the filter and low response values for the
other classes. This way, the likelihood functions for Lxy are
defined as normal distributions. The parameters of the distri-
butions are {μL ,P , σL ,P }, {μL ,L , σL ,L }, {μL ,O , σL ,O} and
{μL ,U , σL ,U }. The unknown class must be modeled with
wide normal distribution, in the same manner as explained
for the intensity feature.

For this feature, the conditions are μL ,O < μL ,L and
μL ,P < μL ,L , which mean that lane markings have always
higher values for this feature than pavement and dark objects.

4.2.3 Parameters estimation

The parameters of the aforementioned functions are com-
puted for each image of the sequence. Hence, the system
dynamically adapts the Bayesian model in a sequential
manner.

The EM algorithm for a mixture of Gaussians is used to
estimate the parameters that govern the likelihood functions
for the defined classes since we defined all of them as nor-
mal distributions. The EM algorithm converges to the opti-
mal solution if it is given a good initialization or start point.
In effect we can provide coarse estimates for these param-
eters through the application of a preliminary analysis of
the histogram of the image (an example image is given in
Fig. 9a and its associated histogram is shown in Fig. 10a). The
approach extracts three groups of pixels from the image, one
for each class. First, the putative pixels of the pavement class
are obtained by dismissing pixels with high gradient. For
that purpose a mask is generated as shown in Fig. 9b, which
is used to remove the pixels with high gradient and their
neighborhood1. The value of the parameters for p(Ixy |X P )

are then obtained as the sample mean and the sample stan-
dard deviation of the pixels of the resulting group, shown in
Fig. 9c.

The lane marking and object classes are then extracted by
thresholding the road-plane image at μI,P ± 3σI,P , respec-
tively. These thresholds were chosen to satisfy the hypoth-
eses μI,O < μI,P < μI,L . In particular, the selection of
μI,P ± 3σI,P dictates that only those pixels falling outside
the 99, 999% of the probability of belonging to the pavement
are considered for modeling the two other classes.

The images in Fig. 9d, e show the corresponding sets
of pixels that likely belong to the lane markings, and the
objects class for an example image. The corresponding his-
tograms for the images in Fig. 9 c–e are shown in Fig. 10b–d,

1 We have done this by applying first a Sobel gradient detection, an
appropriate thresholding and a morphological dilation.
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Fig. 10 Histograms of the different sets of pixels for the computation of the likelihood parameters for Ixy

respectively, with the associated normal fit that depicts
the mean and standard deviation value that describe the
histograms.

Regarding the lane marking detector feature, a similar
approach is followed. The images Lxy are first computed,
and their histograms are assumed to be a mixture of two
Gaussians, one of them centered near zero (corresponding to
the low response of pavement and object pixels to the lane
marking filter), and the other, with much larger variance, cov-
ering the tail of the histogram (which implies that lane mark-
ings obtain high response to the filter, although ranging from
moderate to very high values). A reasonable threshold that
separates these two components is the standard deviation of
the distribution. Once the images are separated, the mean and
standard deviation for the corresponding sets of pixels can
be computed, obtaining {μL ,L , σL ,L , μL ,P = μL ,O , σL ,P =
σL ,O}. Note that for this feature, the pavement and objects
class cannot be distinguished and hence sharing the parame-
ters of the likelihood function.

Within the EM algorithm, the likelihood functions accord-
ing to the two defined features (intensity and response to the
lane markings detector) are modeled as a mixture model:

p(Ixy |{Xi }i∈S) =
∑
i∈S

ωi,L p(Ixy |Xi ) (9)

p(Lxy |{Xi }i∈S) =
∑
i∈S

ωi,I p(Lxy |Xi ) (10)

where ωi,I and ωi,L are the weights of the corresponding
mixture components. These coefficients represent the pro-
portion of elements of the set (in this case the pixels of the
image) that belong to each class. In our approach, the EM
algorithm considers as initialization for these coefficients the
actual proportion obtained in the classification of the previ-
ous time instant and estimates the new values for the current
instant.

The EM algorithm iterates until the whole set of param-
eters, including the mean and standard deviation of each
normal distribution and the mixture component weights are
computed. The E-step and M-step for a mixture of Gaussians
are well-known problems in many computer vision applica-
tions. Their expressions can be found in [24]. As an excep-
tion, the unknown class is kept fixed, and not updated within

the EM framework to ensure that a quasi-uniform distribution
absorbs the putative outliers.

Finally, the system comprises a control mechanism that is
able to detect situations involving sudden visibility or illu-
mination changes, such as when entering or exiting tunnels.
In these situations, the system switches to a transitory state, in
which the variables are not updated according to observations
in order to prevent the system from being corrupted. Mean-
while the images are checked, and the transitory state finishes
when the situation is stabilized. This control scheme hence
increases the overall robustness of the system, and avoids
misleading the EM algorithm with wrong initializations.

4.3 Prior probabilities

The prior probability of each defined class must be com-
puted in order to obtain the final posterior probability for
each pixel of the image. These prior probabilities represent
prior knowledge of the probability of a pixel to belong to each
class before examining its associated observations. Typically,
prior information is obtained from the posterior probabilities
from previous time instants, through the so-called dynamic
or prediction models.

Different source information can be used to generate prior
models. Specifically, if an estimation of the ego-motion of
the camera is available2, we can generate prior probability
maps from the previous time instant posterior probabilities
applying a translation that compensates the ego-motion and
adding some Gaussian blurring.

In the case in which there are vehicles in the scene, we use
their prediction model, as we shall explain in Sect. 6, which
defines the regions of the image that are more likely to con-
tain vehicles in the next image via a binary mask. The prior
information of each pixel for each class can be multiplied by
the value of the corresponding pixels of the mask. Hence, the
probability to belong to one of these classes of the pixels that
belong to the black region of the mask (as shown in Fig. 11b),
is set to a low value (typically 0.1, such that the prior for class
vehicle is 0.9 for these pixels). As a result, the pixels of this

2 It can be obtained easily from the rectified images through the compu-
tation of a simple translation plus rotation motion model, for instance,
with point correspondences between consecutive images.
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Fig. 11 Prior probability map provided by vehicle tracking

black region will be more easily classified as belonging to
the object class by the prior maps. Figure 11 shows in c and
a, respectively, the segmentation results obtained with and
without the use of this prediction model.

5 Road-plane element modeling

The information regarding lane markings and pavement given
by the segmentation is used to estimate the presence and
geometry of the lanes of the road. Our approach success-
fully deals with challenging elements, such as curvature, an
unknown number of lanes, lane changes, poorly painted lane
markings, and lanes of variable width, as well as emerging
and splitting lanes. The following sections describe the “lane
tracker” technique that we use to detect and track the position
of the ego-vehicle inside its own lane with time. Then, we
discuss the estimation of the geometry of the lane that gives
information about the curvature of the road, and finally, we
investigate the presence of adjacent lanes, which is a feature
that is not typically treated in the related literature.

5.1 Lane tracker

The lane tracker technique is commonly known as the func-
tionality of an ADAS system that analyzes the evolution of
the images and determines the width of the own lane, wk , and
the position of the vehicle within it, xk . Hence, lane changes
are also detected by analyzing the evolution of xk and wk .

This evolution is easily described as a dynamic linear sys-
tem that can be solved with a Kalman filter defined by the
following state-space equation:

xk = Axk−1 + Buk + nk (11)

where the state vector is xk = (xk, wk, ẋk, ẇk)
�. The mea-

surement vector is, at each instant, zk = (xk, wk)
�, which

is the instantaneous measurement of the target parameters.
The following paragraphs explain how these measurements
are extracted. The transition matrix, A, and the input control
matrix, B, are given by a constant-velocity model. The use of
this model does not mean that we assume a constant veloc-
ity over all time; rather, the statistical model of the motion
assumes undetermined accelerations with a Gaussian profile,
modeled by nk .

H0

H1

−1
0

H

−1
1

H
10H H

HH1 0
−1

−1

Fig. 12 Image-plane to road plane transforms: H0 image-plane to
road-plane; H1 image-plane to zoomed road-plane

The control matrix, B = (1, 0, 0, 0)�, is used to mod-
ify the estimation of the transversal position of the vehicle
when lane changes are detected. The input control vector is
obtained as

uk =
{

wk if xk > 1
2 (W + wk)

−wk if xk < 1
2 (W − wk)

(12)

where W is the width of the image in pixels; hence, when
the transversal position exceeds the boundary, at the left or
right, of the estimated lane, the input control is activated and
the transversal position is shifted.

The measurement vector, zk , is obtained by recomput-
ing the transformed domain. Namely, a new zoomed road-
plane image that contains information regarding a very near
stretch of the road is created. Figure 12 shows the relation-
ship between the image plane, the road plane, and this new
zoomed road plane. As shown, the zoomed road plane con-
tains only the very lower part of the original image plane in
order to avoid the presence of vehicles. Within this zoomed
image, only the lane markings that belong to the own lane
are displayed and lane markings can be modeled by straight
lines.

The measurement vector is obtained using the Hough
transform on the segmented zoomed road plane. Two straight
lines model the two lane markings of the own lane. These
lines intersect the bottom boundary of the image in two
points. The distance between these points is the measure-
ment wk , while the difference between their middle point
and the mid-lower point of the image is xk .

The tracking process of the own vehicle position is
depicted in Fig. 13. As shown, the noisy measurements are
smoothed with the Kalman filter, which also allows the pre-
diction and correct detection of the lane change event.

5.2 Lane modeling

In this section we discuss the process of modeling the own
lane. This is done by selecting a set of control points of the
lane along the transformed image and then fitting a pair of
curves (one for each lane marking of the lane) using these
control points.
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Fig. 13 Estimation of the transversal position of the own-vehicle inside
its lane (varying from 100 to −100% corresponding to the left-most and
right-most position inside the lane)

5.2.1 Control points generation

Given the segmentation of the image, in this stage we com-
pute the control points, defined by their 2D positions, xi

k ,
which give enough information to model the geometry of
the lane. The detection of the control points is carried out
such that they are distributed throughout the whole image
and constitute a quasi-regular grid, which is updated dynam-
ically along time. This detection then allows for a better and
easier estimation of the curve that best fits them.

For each frame, the control points are updated as shown in
Fig. 14, using their previously computed position and the set
of new measurements obtained from the pixels that belong
to lane markings. The measured control points are compared
with the grid formed by the previous set of control points,
depicted with circles in Fig 14c. These measurements are
clustered around the previous control points, i.e., {xi

k−1}N0
i=1,

so that each previous control point has an associated set of Mi

measures, {zi, j
k }Mi

j=1, which are closer to it than to any other
control point. Therefore, the estimation of the control points
depends on the number of measurements that fall inside its
corresponding cell. The estimated value is computed as

xi
k =

⎧⎪⎪⎨
⎪⎪⎩

xi
k−1 if Mi = 0

zi
k if Mi = 1

zi,∗
k elsewhere

(13)

where zi,∗
k is the measure with the smaller distance to the

previous control point:

zi,∗
k = min

zi, j
k

{‖xi
k−1 − zi, j

k ‖} (14)

5.2.2 Curve fitting

The complexity of the curve modeling of each lane marking
increases as the number of control points being considered
increases. The number of control points per lane marking, c,
models different curve types. If c = 2, the model may be a
line [25,26]; c = 3 defines generic second-order curves, such
as parabolas [11,27], circles, and constrained cubic curves

Fig. 14 Measurement generation: a blobs from dilated lane marking
pixels; b intersection of Hough lines from each blob with horizontal
lines; c previous image with its Voronoi cells division in solid lines, and
the set of points xi

k−1 in circles; d current image with measured zi, j
k ;

estimated zi,∗
k ; and predictions xi

k−1

approximating clothoids [12], while for c = 4, more com-
plex spline shapes [13] can be estimated.

Typical approaches use parabolic models [11] for lane
modeling, which offer enough accuracy for both transformed
domain and original images. However, for the transformed
images, generic circumference arc models show better per-
formance in most situations.

Some researchers use the maximum likelihood method
[26,27] to estimate the parameters of these models. How-
ever, RANSAC is preferred here as it is a robust estimation
approach that shows much better performance by removing
outliers from the set of points [22].

For better performance, we assume that the circumfer-
ence center is at some point on the horizontal line defined by
y = H , i.e., the bottom row of the image. This assumption
forces the vertical to be tangent to the circumference in the
lower part of the image, which is in line with the assumption
that the vehicle is moving approximately parallel to the lane
markings.

Figure 15 shows an example of curve fitting assuming a
circumference model on the rectified domain. Note that the
curvature is moderate in this type of motorways scenario
such that the circumference model achieves a good trade-off
between accuracy and simplicity.

5.3 Multiple lanes estimation

Once the own lane has been estimated in terms of position
and geometry, the presence of adjacent lanes is hypothesized
by assuming that these lanes have the same geometry and
width, i.e., they are located at wk pixels at left and right.
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Fig. 15 Curve fitting for an example image: a rectified image;
b segmentation after Bayesian classifier; and c the resulting circum-
ference model

Several adjacent lanes may be also hypothesized this way,
considering a model defined by the parameter vector (x0, y0,

r ± n · wk)
� where n indexes the number of hypothesized

lanes at left or right.
The verification of adjacent lanes is performed by check-

ing the percentage of pavement pixels contained at each
hypothesized lane. The probability that a hypothesized lane,
indexed by l, actually exists is given by

Pl = 1

N

∑
{xy}∈l

P(X p|zxy) (15)

where the summation is carried out only for the pixels within
the hypothesized lane, whose cardinality is N . The same sta-
tistic is computed for the “unknown” and “Lane marking”
classes. Therefore, it is straightforward to determine the pres-
ence of a lane if Pl is greater than these statistics.

6 Vehicle detection and tracking

The strategy proposed for vehicle detection and tracking lies
on the basis of a previous object segmentation in the trans-
formed image. The proposed framework is flexible as it can
operate over an arbitrary segmentation technique. Particu-
larly, for this work the segmentation explained in Sect. 4 is
used due to its efficiency and reliability. Based on this seg-
mentation, the method achieves vehicle detection and track-
ing by exploiting geometric and appearance information of
the objects. It involves a collaborative analysis of the original
and the transformed images. The former gives a complete
view of the scenario ahead of the vehicle, but the information
content is not homogeneously distributed among the pixels
due to the perspective effect [28]. The latter, in turn, removes
non-linearity at the expense of losing detail during the trans-
formation.

First, vehicle detection is addressed by analyzing the
segmentation image in the transformed domain. Vehicle can-
didates are extracted using the geometric information of the
objects in this domain (i.e., the effect of the homography over
a volumetric object in the perspective image) and the prop-

erties of the bird’s-eye view. On the other hand, the domain
duality allows to verify the compliance of the measured can-
didates with the expected appearance of vehicles in the orig-
inal domain.

Additionally, vehicle tracking is obtained by associating
the measurements at different instants, so that the track of
each vehicle can be identified. The method comprises as well
new vehicle management based on the spatial and temporal
coherence of the measurements. Note that the transformed
domain highly simplifies data association, as vehicles posi-
tions and velocities are proportional to the corresponding
actual magnitudes. Conversely, the original image allows to
refine tracking results, both in the position and the dimension
of the vehicles, which again supports the convenience of the
proposed dual domain approach. Finally, coherent results in
time are ensured by introducing the measurements in a prob-
abilistic framework governed by a Kalman filter. This frame-
work enables us as well to make predictions of the vehicles
positions in the following times. This is especially useful
as it allows to maximize the information exchange between
the segmentation process and the vehicle detection stage.
Namely, a feedback loop is created in which the Bayesian
segmentation framework receives theses predictions as prior
probabilities.

6.1 Measurement generation

As stated, measurements for vehicle detection are extracted
from the dual domain analysis based on the segmentation
explained in Sect. 4. The regions of the image segmented as
objects are taken into account at this stage. Note that all vehi-
cles contain a dark area in their lower part due to shadow and
wheels, which will be classified as object. This dark part is
enlarged in the transformed domain, as shown for the white
vehicle in Fig. 8b). However, this segmentation is performed
at a pixel level; hence, the result often shows unconnected
regions and is corrupted by noise (see Fig. 16b, where the
pixels belonging to the object class are painted in white).
Therefore, a morphological opening operation, i.e., an ero-
sion followed by a dilation, is performed to obtain enhanced
images in which objects are clearly segmented. The initial
erosion (typically involving a small square structuring ele-
ment) removes background noise, whereas the subsequent
complementary dilation operation restores the contours of
the objects, as shown in Fig. 16c, d, respectively.

As a result of these operations, an enhanced image is
obtained, which consists of several compact white zones
(known as blobs). These blobs, characterized by their posi-
tion, x, and width, w, as illustrated in Fig. 16e, represent
the hypotheses for the vehicles in the image. The verifica-
tion of these hypotheses is performed twofold. First, the
nature of the underlying projectivity to the road-plane is
taken into account. Namely, the homography produces a
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Fig. 16 Image in b shows the
segmentation of a.
c, d Correspond to the erosion
of b and dilation of c,
respectively. A typical blob is
shown in e, where only the
lower part is taken into account
due to perspective distortion

(a) (b) (c)

(d)

Blob

lower part

x_left x_rightx

(e)

radial distortion of the elements of the objects above the road
plane, as can be observed in Fig. 2. Hence, only the candi-
dates showing a shape compliant with this kind of distortion
are considered. Observe that in the example in Fig. 16d both
candidates have the expected shape.

On the other hand, the dual domain approach allows to
check the appearance of the hypothesized vehicles in the
original domain. The inverse homography H−1 delivers the
position and width of the candidates in this domain. Addi-
tionally, assuming a standard aspect ratio of vehicles (i.e.,
1.2:1) a rectangular region is defined around each hypothe-
sized vehicle position. The verification is performed in these
regions, and is based on different cues for close and distant
objects. For the former, a symmetry measure is used, since the
rears of vehicles have a high degree of symmetry around the
vertical axis. Hence, the vertical symmetry, denoted f and
normalized between 0 and 1, is computed as in [17] inside the
bounding box. Regions with high symmetry values ( f > t f )
are classified as potential vehicles. As for distant vehicles,
the resolution is usually not sufficient to provide a signifi-
cant symmetry value. In this case, the edge density is used as
a cue for vehicle verification. Vehicles present a high density
of edges owing to their contrast with the background, plate,
back glass, etc. Hence, the edge density is computed in the
hypothesized window as

d = 1

Rx Ry

∑
x,yεR

e(x, y) (16)

where e(x, y) is the edge intensity of pixel (x, y) between 0
and 1 computed using the Sobel edge detector, and R is the
bounding box of the candidate, with dimensions Rx × Ry .
Candidates with high edge density values (d > td ) are
classified as potential vehicles. The thresholds t f and td are
defined in such a way that the negative classification of true

vehicles is minimized, even if it involves some false detec-
tion. These can be effectively filtered in the tracking stage
due to their lack of coherence and persistence, as explained
below.

6.2 Vehicle tracking

The segmentation provides instantaneous measurements of
the positions of the vehicles. However, valuable insight in the
characterization of the vehicles (position, trajectory, new
vehicle entries, etc.) can be attained by analyzing the tempo-
ral evolution of these measurements. Remarkably, the trans-
formed domain constitutes a suitable framework to perform
temporal correlation: in effect, it provides an up-to-scale
reconstruction of the road plane and thus data association
can be performed on the basis of Euclidean distances. This
largely simplifies as well vehicle entry and exit management.
Additionally, in the transformed domain motion of vehicles is
proportional to their true motion; thus it can be modeled via a
linear process based on Kalman filtering. On the other hand,
the lack of accuracy and of height information inherent to this
domain are compensated by resorting to the original domain,
which is richer in details and hence provide refined data.

6.2.1 Data association

Note that at each instant independent results are obtained for
the set of vehicles. In addition, occasionally some false pos-
itives or negatives can occur as a result of poor segmentation
of the objects. Therefore, data association between frames
is needed. The objective is to assign n measures in the cur-
rent frame to m existing vehicles. In this work, a clustering
technique based on a similarity criterion is applied. Namely,
a similarity function is defined that compares the attributes
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Fig. 17 Examples of the applied clustering technique. Predicted vehi-
cles are painted with a solid line and a cross in the middle (the cross
indicates position xp , and the segment corresponds to width wp), and
blobs associated with them are patined as isolated crosses

of each current candidate, (xc, wc), with those predicted for
each vehicle, (xp, wp). The similarity is modeled as a func-
tion of two factors relating to the relative position and the
relative width of the candidates as

S = wp

|wp − wc|
1

‖xp − xc‖ (17)

The distance is defined as a Euclidean metric, and it consid-
ers the mid-lower pixel of the blob as defined in Fig. 16e.
Naturally, the blob that maximizes the similarity function
for each vehicle is assigned to it. Clustering is illustrated
in Fig. 17 with two examples, in which the predictions are
shown with line segments with a cross in the middle, and the
attributes of the candidates most similar to them are painted
as isolated crosses. In Fig. 17a, five blobs are segmented and
only three vehicles are predicted; the assignment is clear as
the position and width of the selected blobs are very similar
to the predictions. In Fig. 17b, three blobs are found for two
predicted vehicles. Here, for the lower predicted vehicle, the
larger blob is selected although the small blob in the left is
slightly closer to the prediction, due to its similarity in the
width. Finally, if no measurement is found for the vehicle, the
tracking process relies on the predicted attributes associated
with it. This reveals the suitability of the predictive nature of
the proposed framework.

6.2.2 New vehicle management

The above method relates existing vehicles with their cor-
responding new measurements. However, new vehicles may
enter the scene at time k. These appear as additional blobs in
the enhanced segmentation image. On the other hand, some
spurious blobs may also arise due to artifacts in the segmen-
tation. A twofold verification (i.e. spatial and temporal) is
carried out to differentiate the blobs corresponding to enter-
ing vehicles. First, due to kinetic constraints between con-
secutive frames, vehicles may only appear in the uppermost
(far vehicles coming closer) or lowermost (vehicles overtak-
ing the own vehicle) zones of the road-plane image. Hence,
to ensure spatial coherence, only these zones are analyzed.

Fig. 18 New object management. At time k, a new blob appears in
the image, which already contains one existing vehicle. The new blob
fulfills both spatial and temporal coherence criteria at times k +1, k +2
and k + 3; thus, it is classified as a vehicle and tracked henceforth

Additionally, a temporal coherence criterion is enforced
for the remaining blobs, i.e., a set of similar blobs is sought
in the following frames (see Fig. 18). The similarity function
is evaluated for every set according to the descriptor in (17).
Eventually, a new vehicle is hypothesized when the elements
of the set fulfill the similarity condition S > 2/td . Visually,
this condition holds if, after the initial observation of the blob
at time k, a blob is found at subsequent time points that is
inside the search area of radius td (‖xp − xc‖ < td ) and has
a width at maximum of 50% larger or smaller than the initial
observation ( |wp−wc|

wp
= 1/2). This is the case for the example

in Fig. 18, where the position and width of the detected new
blob are similar throughout four consecutive frames. Note
that both the spatial and the temporal verification are widely
simplified due to operation in the homogeneous transformed
domain, as opposed to classical approaches working in the
original domain, which usually require more complex anal-
ysis or additional a priori conditions.

6.2.3 Detection refinement

Results obtained in the transformed domain provide a coarse
approximation to ground truth, as the change of domain
entails a certain loss of accuracy. In addition, the transformed
domain involves a bird’s-eye view and thus removes infor-
mation regarding the height dimension of the vehicles. The
proposed collaborative approach is exploited here to shift
the processing to the original domain. The objective is two-
fold: (i) to refine the widths and positions obtained in the
transformed domain, and (ii) to allow the estimation of the
height of the vehicles in order to provide a more complete
characterization.

Refinement in the original image is based on edge informa-
tion; in effect, the contour of the vehicle rear usually presents
abrupt edges. Hence, edge information is used to refine the
bounding box of each vehicle. The rectangle bounding the
vehicle is obtained using the inverse homography H−1 in
the same manner as in Sect. 6.1. In order to ensure that edges
are contained in it, the region is expanded around the hypoth-
esized bounding box, and the Sobel edge detector is applied
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Fig. 19 Vehicle detection refinement: a A detail of the closer vehicle
in c; b is the result of Sobel operator over a. Observe that both the ver-
tical and the horizontal edge histograms feature prominent peaks in the
positions of the vehicle contour

over all of the pixels in the extended region. This is illustrated
in Fig. 19: the image in b corresponds to the edge intensi-
ties computed over the image in a, which in turn shows a
detail of the closest vehicle in c. Then, the resultant edge
sub-image in b is scanned and the values are added up, first
left to right to produce the horizontal edge histogram, and,
in turn, bottom to up to render the vertical edge histogram
(see Fig. 19b). The former is expected to have prominent
peaks for the upper and lower limits of the vehicle, while
the second will contain two peaks, for its left and right lim-
its. The local maxima are selected at each side of the his-
togram so that a refined bounding that fits the real contour
of the vehicle box is finally obtained. The achieved fine-
tuning is illustrated in Fig. 19c, where the solid line depicts
the coarse detection obtained from the transformed domain,
and the dotted line corresponds to the refined bounding box.
As a result of this stage, height information is added to the
previous vehicle attributes, position and width, which are in
turn fine-tuned.

6.2.4 Probabilistic filtering

So far, the method obtains sequential measurements for each
of the vehicles in the scene. These measurements are time-
correlated (i.e., a track is kept for each vehicle) but lack
coherence in what concerns their fitting the known dynamics
of vehicles. In effect, vehicles move forward with a locally
uniform pace, especially in highways. Therefore, smooth
changes are expected in the position of the vehicles on the
road and their velocity is approximately constant, at least
locally. This knowledge allows to introduce the measure-
ments into a probabilistic framework that filters noisy
instantaneous measurements, thus providing smooth results.
In particular, in the transformed domain vehicle dynamics are

proportional to their actual magnitudes; hence the state evolu-
tion in this domain can be considered to be linear. Therefore,
the transformed domain enables us to model vehicle kinetics
with a constant-velocity Kalman filter.

The state vector is composed of the position (x, y),
velocity (ẋ, ẏ), width (w), and normalized height (h̄) of an
object:

xk = (x, y, ẋ, ẏ, w, h̄)� (18)

For every time point k, the object attributes (position, width
and height) are measured; thus, the measurement vector zk

is given by

zk = (x, y, w, h̄)� (19)

Both the position and width measurements refer to the road-
plane image, where the linearity condition holds. Hence,
these measurements must be transformed back to the origi-
nal image after the refinement stage. Conversely, the height
information only exists in the original image, where it is non-
linear due to perspective. To make it linear, a normalized
height measure, h̄, is defined as in [29].

As regards the choice of the process and measurement
noise covariance, the following considerations are insight-
ful. First, the process noise must be low due to the adequacy
of the linear evolution of the state vector for a real scenario.
In particular, the noise covariances of the width and height
attributes are almost zero, as the dimensions of the object are
actually constant. As for the measurement noise, the uncer-
tainty is larger as it depends on the accuracy of the segmen-
tation. In any case, its covariance should be larger that of
the process noise in order to prevent the system from being
corrupted by poor measurements. Noise covariances may be
tuned to adapt more quickly to changes in the measurements
or to enforce smoothness, as long as the process noise remains
smaller than the measurement noise.

Note that the predictive nature of the Kalman filter is
of great value as it allows to create a feedback loop which
enriches other stages of the system. Indeed, predictions are
used to perform data association on the incoming measure-
ments (see Sect. 6.2.1). Moreover, they are also used to feed
back the segmentation process, namely the expected posi-
tions of the vehicles are used to define the prior probability
to belong to the object class. In effect, since the vehicle posi-
tion and width estimates are available, and given the radial
distortion produced by the road plane homography, it is pos-
sible to infer the regions potentially containing objects in the
following frame. In this work, a binary probability map is
generated as shown in Fig. 11b. This feedback loop allows
to maximize data exchange between modules and thus to
capitalize on all available information.
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7 Tests and discussion

All the developments have been carried out in C++ program-
ming language, under an MFC solution for Windows and
Direct Show primitives. This architecture allows for a real-
time performance of the system for real on-road operation as
well as continuous visualization of the processed data. More-
over, the system was designed to be able to acquire the video
stream from different digital interfaces, such as USB, Fire-
Wire, GEthernet, etc. Nevertheless, for the trials, the acquir-
ing system was composed of a forward looking digital video
camera SONY HDR-HCR5E, installed near the rear mirror,
and a FireWire connection to the processing system. The size
of the images is 360 × 288, which allows the system to work
near real-time, at 15 frames per second on average (including
video visualization and output data generation) in a laptop
Core2Duo at 2.2 GHz with 2 GB of RAM.

The real on-road trials have been conducted in differ-
ent roads in Madrid, Brussels, Milano, Torino, and the A4
Brescia–Padova motorway (during the test sessions carried
out in different stages of the I-WAY integration activities).
From these trials, we have collected a large number of
sequences (with a total length of around 150 min) from which
we have gathered relevant output data. The target is to analyze
the behavior and the performance of the system, monitoring
its main output parameters, namely, the position of the vehi-
cle inside its lane, the number of lane changes, the curvature,
the positions of the vehicles ahead, and their dimensions.

Different scenarios are considered to demonstrate the abil-
ity of the system to adapt to the uncontrolled outdoor sce-
nario, including changing illumination conditions, different
pavement color, varied weather conditions, different type of
lane markings, presence of vehicles that cause occlusions,
etc. Attending to the results obtained through the tests, we
can extract the following conclusions:

The position of the own vehicle inside its lane (a feature
that depends on the lane tracker performance, described in
Sect. 5.1) is estimated with high accuracy in almost all situa-
tions. Some examples are shown in Fig. 20. The central over-
laid region defines the closer part of the own lane, according
to the detected lane markings, depicted with thick solid lines.
The center of the lane is marked with a thin solid line, and
the center of the image with a shorter black line. The relative
position of the vehicle in the lane is depicted with a numerical
indicator, which is 0% at the center of the lane, and −100 and
100% at its left-most and right-most position, respectively.
As shown, the width of the lane may vary, but it is accurately
estimated by the system.

The lane change detection is one of the higher perfor-
mance features of the developed system (as will be shown in
Table 1). The second row of Fig. 20 shows some detected lane
changes, whose direction is indicated with a superimposed
icon. The detection of the significant curves depends on the

visibility of the lane markings in the far distance, which is
generally good provided that the traffic load is not too heavy.
In these situations, the system correctly detects the curvature,
as in the examples shown in the third row of Fig. 20.

Regarding the detection of multiple lanes, the system has
shown excellent performance in most situations. As long as
the segmentation result is correct, which is true for most situ-
ations, the system is able to hypothesize the presence of adja-
cent lanes to the own lane and confirm their presence using
the Bayesian segmentation information. Different examples
illustrate this ability in the Fig. 20: when driving in the right
lane, the system is able to determine that there are no more
lanes at the right, and analogously when driving in the left-
most lane. When driving in the central lanes, three lanes are
hypothesized at most. This number is not a limitation of the
algorithm, but a design parameter, as beyond these there are
not enough pixels to take a reliable decision.

In the field of vehicles detection, most of the cars are cor-
rectly detected in the region of interest (up to 35 m inside the
detected lanes) for all the considered scenarios. The Fig. 20
shows several examples of detected vehicles, represented by
a rectangular box around these, that illustrate the dimensions
of the vehicles, as well as their location inside the lanes.
Provided that the camera is calibrated, its distance in meters
to the camera is printed with a yellow numerical indicator.
First, recall that the dimensions of the vehicles are typically
well estimated, up to some errors due to the presence of
intense edges at the background. Second, the tracking frame-
work allows to keep track of the vehicles, giving a temporal
coherence to the detection, as well as robustness against brief
occlusions, such as the one shown in the two last images of
Fig. 20. This is a raining scene, where even with the presence
of the wipers, which appear and occlude the vehicle momen-
tarily, the tracker succeeds in maintaining the detection of
the vehicle for successive frames.

One of the major abilities of the proposed system is its
demonstrated robustness against challenging, unpredictable
situations. On-road trials feature, for instance, sudden illumi-
nation changes (e.g. when entering into tunnels, or passing
below a bridge), the appearance of the aforementioned ele-
ments such as wipers, drawings on the road, drops on the
windscreen, irregular color of the pavement, reflections, etc.
The proposed models rely on the robustness of the probabi-
listic segmentation, that is able to handle any of these diffi-
culties with the “unknown” class. In few words, the system
has been designed to search for and model lane markings, the
color of the pavement and vehicles, and to not be deceived
by this type of uncontrolled scenarios.

Figure 20 show the excellent performance of the sys-
tem for a wide variety of scenarios. In order to reflect more
objectively the performance, a set of relevant parameters has
been defined, i.e., vehicle detection rate (VDR), lane change
detection rate (LCDR), vehicle false positive rate (VFPR),
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Fig. 20 Examples showing the detected elements of the road: In the upper row some representative examples of the accuracy of the lane tracker
are shown; the second row shows examples of lane change events; and the lower row illustrates vehicle detected in difficult scenarios

Table 1 Detection results for different scenarios

Event Type of scenario

Typical Complex

No. of total vehicles 1,056 1,177

No. of detected vehicles 1,021 1,079

No. of lane changes 204 211

No. of detected lane changes 196 197

No. of false positive vehicles 21 46

No. of false positive lane changes 3 9

VDR (%) 96.69 91.67

LCDR (%) 96.08 93.36

VFPR (%) 1.98 3.90

LCFPR (%) 1.47 4.27

and lane change false positive rate (LCFPR). The former
two are defined as the number of correct detections over the
total number of events (presence of vehicle or lane change,

respectively) indicated by the ground truth. The latter are
defined analogously as the number of false positives. They
have been measured off-line for a large set of sequences
corresponding to two scenarios: typical and complex. The
former involves the typical driving conditions in motorways,
that is, well-painted lane markings, variable illumination con-
ditions with soft changes, low/medium traffic density, or
favorable weather conditions (including mild rain). The latter
comprises those conditions that are not so commonly encoun-
tered in motorways (such as dense traffic or variable illumi-
nation conditions with rapid and abrupt variations), or those
that occur for short periods of time (such as tunnels, which
entail artificial illumination conditions).

Table 1 shows the performance of the system, in terms of
detection and false positive rates, for the two sets of scenar-
ios. As can be observed, the vehicle detection and the lane
change detection rates are very high (over 96%) in a typi-
cal scenario. In this situation, the false positive rate is under
2% for both features. As for complex scenarios, the vehicle
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detection rate decreases to 91.67% and the lane change detec-
tion rate to 93.36%. Both figures are reduced but still show
excellent performance, the higher impact in the former being
due to the complexity of the shadow analysis in this kind of
scenarios and to the occlusions between vehicles when dense
traffic load exists.

8 Conclusions

In this paper a novel vision-based road environment model-
ing is proposed, which comprises a model of the lanes, as well
as the situation of the own vehicle and others in the road. The
proposed solution entails a number of innovative techniques,
which separately address the different stages of the process-
ing (stabilized road plane rectification, adaptive Bayesian
segmentation and temporal coherent models for lane marking
detection and vehicle detection and tracking) and whose com-
bination results in a system that is robust, adaptive, and accu-
rate. One of the main advantages of the proposed strategy is
its robustness against the uncontrolled changing conditions of
the road environment: the illumination may vary dramatically
in few frames (consider the entrance to a tunnel), the weather
may introduce artifacts in the image such as those produced
by the wipers, variation in the color of the pavement of the
road (in terms of its homogeneity and its contrast to other ele-
ments, such as lane markings or vehicles), and presence of
different type of vehicles. The information provided by this
system is of great interest for decision systems, as it includes
the position of the vehicle inside its own lane, the width of the
lane, the presence of adjacent lanes, the relative position and
motion of other vehicles in the road, as well as their dimen-
sions. The system has been tested on-road for a wide variety
of situations, resulting in all cases in excellent performance.
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